
TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

Delphi Tutorial

 Windows Shell Extension – Step-by-Step

 Context Menu

Scope
This is a Delphi tutorial for implementation of a Windows Shell

(Explorer) Extension in form of a Context Menu, which provides

functionality when right-clicking on a file in the Windows Explorer.

The tutorial provides a full step-by-step guide building a Delphi

project from scratch to achieve the additional context menu

functionality on a Windows Explorer, as shown on the figure. The 2

menu entries MyShellExt: Hello World 1, and 2 are provided by the example code.

Background
A Windows Shell Extension is expanding the function of the Windows Explorer and adds additional

functionality, like a context menu when right-clicking on a file or a selection of files.

This tutorial provides a step-by-step (idiot) guide with screenshots and code snippets you can copy

and paste.

Prerequisite
You need a Delphi Compiler. For this project I used Delphi 10 Seattle.

You need Windows Operating System.

Feedback - Help
Friendly Feedback is always welcome.

If you need help, let me know at: delphi@ugarbe.de

If you need professional help, or want to contract code creation, let me know at: delphi@ugarbe.de

If you want to support this kind of work, you can sponsor my work, please let me know at:

delphi@ugarbe.de

mailto:delphi@ugarbe.de
mailto:delphi@ugarbe.de
mailto:delphi@ugarbe.de

TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

Create an Active-X COM Object
Lets go for it – start your Delphi IDE

Create an Active-X Library
File -> New -> Other

ActiveX -> ActiveX Library

-> a project is created.

Rename the Attribute Name from Project1 to

your plugin name with the _Library. For

instance to: MyShellExt_Library:

-> Save -> MyShellExt_Library.ridl

-> Save All ->

 To save the unit and the project.

TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

The project should look like this:

Add a COM Object
-> File -> New -> Other -> ActiveX -> COM

Object

-> give the CoClass Name to: MyShellExt

The rest should be fine

There will be a new unit: Unit1

Open Unit1 and save it as: MyShellExt_Menu

TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

Result of COM Object Creation
The unit code looks like this:

TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

Build the Code for the Shell Extension

Create an ObjectFactory for initialising the COM Object
Now we adopt the code to write

the initialisation handler which

must register our COM object (the

Class we defined:

Class_MyShellExt) and add a

procedure to registry keys in the

Windows Registry to make the shell

extension known to the Explorer.

For this we define a new type:

TMyShellExt_Factory with an

UpdateRegistry procedure and

adopt the code in the initializsation

section to create and instance of

the COM object. Lets also add a finalization section

for later.

Here the code for copy pasting:

Declare the Shell Extension Interfaces
Now we tackle the type definition of TMyShellExt to provide the interfaces required for a shell

extension. Pending which kind of extension you wish to implement different interfaces need to be

provided. Lets start easy with a Context Menu, which requires:

class(TComObject, IUnknown, IContextMenu, IShellExtInit)

The IContextMenu and IShellExtInit

require specific procedures being

provided by the object. For more

info on there query the Microsoft

webpages.

The initialisation function is casted

to InitShellExt, just for better

reading and the IContextMenu

requires 3 functions as shown.

Also add in the uses clause the

shlObj library to make the objects know to Delphi. We also define a variable in the private section

which can be used by our code later on.

uses

 Windows, ActiveX, Classes, ComObj, MyShellExt_Library_TLB, StdVcl, shlObj;

type

 TMyShellExt = class(TComObject, IUnknown, IContextMenu, IShellExtInit)

 private

 fFileName: string;

 protected

 {Declare IContextMenu methods here}

 function QueryContextMenu(Menu: HMENU; indexMenu, idCmdFirst, idCmdLast,

 uFlags: UINT): HResult; stdcall;

 function InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult; stdcall;

 function GetCommandString(idCmd: UINT_PTR; uFlags: UINT; pwReserved: PUINT;

 pszName: LPSTR; cchMax: UINT): HResult; stdcall;

 {Declare IShellExtInit methods here}

 function IShellExtInit.Initialize = InitShellExt;

 function InitShellExt (pidlFolder: PItemIDList; lpdobj: IDataObject;

 hKeyProgID: HKEY): HResult; stdcall;

 end;

type

 TMyShellExt_Factory = class (TComObjectFactory)

 public

 procedure UpdateRegistry (Register: Boolean); override;

 end;

implementation

uses ComServ;

initialization

 TMyShellExt_Factory.Create(ComServer, TMyShellExt,

Class_MyShellExt, 'MyShellExt', 'testing',

 ciMultiInstance, tmApartment);

finalization

TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

Adjust Delphi Compiler Options
Before compiling the code adjust the Target Platform to Win64 which

is the 64-bit code which most of the Windows installations require

today.

-> right click on Target Platforms (Win32) -> Add Platform

-> select 64-bit Windows

A proposed adjustment is the location where Delphi

stores the complied code, the MyShellExt.dll in our

case. This step is not important and is purely to

support my style of working

-> Project -> Options

Then you can change the Output Directory and Unit

Output Directory entries to .\

After this the .dll will be created in the same directory as

where the project is saved. (otherwise the .dll will be in

sub-directories – this).

TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

Prepare the Interface Functions Implementation for Compiler Test
Now we prepare the

implementation of all

functions which have been

defined for the defined 2

types: TMyShellExt and

TMyShellExt_Factory.

After this step we should be

able to compile the code and

receive the .dll in the code

directory.

Please ensure this works.

There will be warnings but

there must be no errors.

Add the functional code
To see that we are on the right track we need to provide code to the following 2 functions: we need

to update the registry, so the Explorer knows which object is serving an Explorer event – in our case a

right mouse click.

Registry Entries for Context Menu Handlers
First we link our shell extension class

(Class_MyShellExt) to the context

menu handlers. This is done through

the registry with this code. When

later we will register our .dll this

procedure is called with the value

True, if we unregister it will be called

with the value False.

If Register the registry key is created

and under the default value the GUID

(Globally Unique Identifier) to our

object is provided. If Register is false the key will be deleted from the Registry.

implementation

uses ComServ, Messages, SysUtils, Registry, vcl.dialogs;

function TMyShellExt.InitShellExt (pidlFolder: PItemIDList; lpdobj: IDataObject;

 hKeyProgID: HKEY): HResult; stdcall;

begin

end;

function TMyShellExt.QueryContextMenu(Menu: HMENU; indexMenu, idCmdFirst, idCmdLast,

 uFlags: UINT): HResult; stdcall;

begin

end;

function TMyShellExt.InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult; stdcall;

begin

end;

function TMyShellExt.GetCommandString(idCmd: UINT_PTR; uFlags: UINT; pwReserved: PUINT;

 pszName: LPSTR; cchMax: UINT): HResult; stdcall;

begin

end;

procedure TMyShellExt_Factory.UpdateRegistry (Register: Boolean);

begin

end;

procedure TMyShellExt_Factory.UpdateRegistry (Register: Boolean);

var

 Reg: TRegistry;

begin

 inherited UpdateRegistry (Register);

 Reg := TRegistry.Create;

 Reg.RootKey := HKEY_CLASSES_ROOT;

 try

 if Register then

 if Reg.OpenKey('*\ShellEx\ContextMenuHandlers\MyShellExt', True) then

 Reg.WriteString('', GUIDToString(Class_MyShellExt));

 if not Register then

 if Reg.OpenKey('*\ShellEx\ContextMenuHandlers\MyShellExt', False) then

 Reg.DeleteKey('*\ShellEx\ContextMenuHandlers\MyShellExt');

 finally

 Reg.CloseKey;

 Reg.Free;

 end;

end;

TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

Display a Menu Item in the Context Menu
Now we can add menu items to the

context menu. The function

QueryContextMenu provides this

feature. InsertMenu is one way of doing

it as shown here. We add 2 menu items

and need to return the number of added

items.

function TMyShellExt.QueryContextMenu(Menu: HMENU; indexMenu, idCmdFirst,

idCmdLast,

 uFlags: UINT): HResult; stdcall;

begin

 // If the flags include CMF_DEFAULTONLY then we shouldn't do anything

 if (uFlags and CMF_DEFAULTONLY) = CMF_DEFAULTONLY then Result := 0

 else begin

 // add a new item to context menu

 InsertMenu (Menu, indexMenu,

 MF_STRING or MF_BYPOSITION, idCmdFirst,

 'MyShellExt: Hello World 1');

 InsertMenu (Menu, indexMenu+1,

 MF_STRING or MF_BYPOSITION, idCmdFirst+1,

 'MyShellExt: Hello World 2');

 // Return number of menu items added

 Result := 2;

 end;

end;

TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

First testing of code
Now is the first step where we can see if our code works

Just 2 steps.

-> compile the code – there must be no errors!

Then we need to register the dll to the Windows operating system. You can do this with the Delphi

IDE, or through the command line interface. I prefer the hard way through the command line

interface.

-> open CMD with administrator privileges! … and

go to the directory of your project.

When you list the directory (dir) you will find our

MyShellExt.dll.

Ensure the command prompt runs in Administrator

mode (top of screenshot).

Now you can register the dll with the following

command:

 regsvr32 MyShellExt.dll

The registration will be confirmed of being

successful.

To unregister use:

regsvr32 -u MyShellExt.dll

Now in Explorer, right click any of the files and you

should see the 2 menu items

Congratulations

The next steps will add actions to the interface.

TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

ONE MORE THING WITH REGISTERED DLLs
As seen above there is a way to register and un-register dlls. Once a dll is registered, you cannot

change or delete it. This means you can also not recompile the code, you’ll receive an error message

from Delphi !!!

After un-registering the dll is still bound to the Windows Explorer – at least for a certain time which I

don’t know (if you know this, feel free to provide feedback).

The solution: close the instance of Explorer(s) where you tested the functionality. Then reopen

Explorer in that directory. I use the right click on the Taskbar, which shows me the last directories

used by Explorer, so I don’t need to browse back to the folder where our code is stored.

Add Code to the Menu Items
Now we will to provide functionality to the 2 menu

items. (remember, we published 2 menu items).

When one of the items is selected the

InvokeCommand function is executed. The lpici

variable, a 16 bit variable, holds the index of the

menu item and some additional context

information. In the second half of the code we

check the lower byte of the variable, which holds

the index. Based on the index we show a message

if the 1st menu item has been selected or the 2nd

menu item.

Compile the code and test the DLL.

HINT: Don’t forget to first unregister the DLL, close the Explorer where you tested the code, open a

new Explorer at the folder, compile, register … now you can test.

Here the reward of all the work we have done so far:

Impressive? Almost. Considering that we generate code which

integrates with the Windows Operating System and adds new

functionality to the Explorer, is impressive, but up to now this

is very static and we need one more thing to develop real cool code. We need to know the file(s)

which was selected. Then we can apply code to that file.

function TMyShellExt.InvokeCommand(var lpici:

TCMInvokeCommandInfo): HResult; stdcall;

begin

 Result := NOERROR;

 // Make sure we are not being called by an application

 if HiWord(Integer(lpici.lpVerb)) <> 0 then

 begin

 Result := E_FAIL;

 Exit;

 end;

 // Make sure we aren't being passed an invalid argument number

 if LoWord(lpici.lpVerb) > 1 then

 begin

 Result := E_INVALIDARG;

 Exit;

 end;

 // execute the command specified by lpici.lpVerb.

 if LoWord(lpici.lpVerb) = 0 then

 begin

 showMessage('1st menu item');

 end;

 if LoWord(lpici.lpVerb) = 1 then

 begin

 showMessage('2nd menu item');

 end;

end;

TLP:WHITE
GSCL//Unclassified//

TLP:WHITE
GSCL//Unclassified//

Identify the File(s) Selected
Lets tackle the init function which we casted to

InitShellExt. The function is called when a one

of our menus is selected. The lpdobj variable

links to a data structure which includes the

filenames selected and applied to one of our

menu items.

The function DragQueryFile (medium.hGlobal,

$FFFFFFFF, nil, 0) provides the nth selected

filename, selected with the second parameter

of the function. If this parameter is $FFFFFFFF

then it provides the number of selected files.

To keep the code most easy we only accept one

file being selected and store the result in the

fFileName variable.

To demonstrate that we receive the correct

filename, adopt the code in the InvokeCommand

function in the 2 showMessage functions to show

the fFileName variable, which holds the selected

filename.

Don’t forget to: Unregister, close Explorer window, reopen Explorer, compile, register, right click.

Congratulations you made it

function TMyShellExt.InitShellExt (pidlFolder: PItemIDList; lpdobj:

IDataObject; hKeyProgID: HKEY): HResult; stdcall;

var

 medium: TStgMedium;

 fe: TFormatEtc;

begin

 Result := E_FAIL;

 // check if the lpdobj pointer is nil

 if Assigned (lpdobj) then begin

 with fe do begin

 cfFormat := CF_HDROP;

 ptd := nil;

 dwAspect := DVASPECT_CONTENT;

 lindex := -1;

 tymed := TYMED_HGLOBAL;

 end;

 // transform the lpdobj data to a storage medium structure

 Result := lpdobj.GetData(fe, medium);

 if not Failed (Result) then begin

 // check if only one file is selected

 if DragQueryFile (medium.hGlobal, $FFFFFFFF, nil, 0) = 1 then

 begin

 SetLength (fFileName, 1000);

 DragQueryFile (medium.hGlobal, 0, PChar (fFileName), 1000);

 // realign string

 fFileName := PChar (fFileName);

 Result := NOERROR;

 end else

 Result := E_FAIL;

 end;

 ReleaseStgMedium(medium);

 end;

end;

 if LoWord(lpici.lpVerb) = 0 then

 begin

 showMessage('1st menu item selected on file: ' + fFileName);

 end;

 if LoWord(lpici.lpVerb) = 1 then

 begin

 showMessage('2nd menu item selected on file: ' + fFileName);

 end;

